REAL AND COMPLEX NUMBERS
Question 1:
Recognize the properties of real numbers used in the following:
(i)
21+32=32+21Solution:
a+b=b+aCommutative property of addition
(ii)
34+(31+32)=(34+31)+32Solution:
a+(b+c)=(a+b)+cAssociative property of addition
(iii)
9×(910+920)=(9×910)+(9×920)Solution:
Left distributive property of multiplication over addition
(iv)
(54+87)×75=(54×75)+(87×75)Solution:
Right distributive property of multiplication over addition
(v)
(57−53)×1510=(57×1510)−(53×1510)Solution:
Right distributive property of multiplication over subtraction
(vi)
cd×fe=fe×cdSolution:
Commutative property of multiplication
(vii)
11×(15×21)=(11×15)×21Solution:
Associative property of multiplication
(viii)
2÷11×11÷2=1Solution:
Multiplicative inverse
(ix)
(53)+(−53)=0Solution:
Additive inverse
(x)
(ba×ab)=1Solution:
Multiplicative inverse
(xi)
(1015×58−104)=(1015×58)−(1015×104)Solution:
Left distributive property of multiplication over subtraction
(xii)
32×23=1Solution:
Multiplicative inverse
Question 2:
Fill the correct real number in the following to make the real numbers property correct.
(i)
52+63+□=63+□+52Solution:
a+b=b+aAnswer: 52
(ii)
7÷10+(70÷16÷33)=□+(7÷10)Solution:
a+(b+c)=c+(a+b)Answer: 70÷16÷33
(iii)
5099×9950=□Solution:
Answer: 1
(iv)
9559×5995=□Solution:
Answer: 1
(v)
(−21)+□=0Solution:
Answer: 21
(vi)
(85×32)−□=(85×32)+(85×75)Solution:
Answer: 5/7
Question 3:
Fill the following blanks to make the property correct/true:
- 5<8 and 8<10⇒5<10
- 10>8 and 8>5⇒10>5
- 3<6⇒3+9<6+9
- 4<6⇒4+8<6+8
- 8>6⇒6+8<6+6
Question 4:
Fill the following blanks to make the property correct/true:
- 5<7⇒5×12<7×12
- 7>5⇒7×12>5×12
- 6>4⇒6×(−7)<4×(−7)
- 2<8⇒2×(−4)>8×(−4)
- 8>6⇒6+8<6+6
Question 5:
Find the additive and multiplicative inverse of the following real numbers:
(i) 3
- Additive inverse: 3+(−3)=0
- Multiplicative inverse: 3×31=1
(ii) -7
- Additive inverse: −7+7=0
- Multiplicative inverse: −7×−71=1
(iii) 0.3
- Additive inverse: 0.3+(−0.3)=0
- Multiplicative inverse: 0.3×0.31=1
(iv)
−55- Additive inverse: −55+55=0
- Multiplicative inverse:
−55×(−55)=1(v)
(vi) 0
- Additive inverse: 0+0=0
No comments:
Post a Comment